
Lists

['Demo1']



Working with Lists

>>> digits = [1, 8, 2, 8]

2

The number of elements

>>> len(digits)
4

An element selected by its index
>>> digits[3]
8

Nested lists

>>> pairs = [[10, 20], [30, 40]]
>>> pairs[1]
[30, 40]
>>> pairs[1][0]
30

>>> [2, 7] + digits * 2
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

Concatenation and repetition

>>> getitem(digits, 3)
8

>>> add([2, 7], mul(digits, 2))
[2, 7, 1, 8, 2, 8, 1, 8, 2, 8]

>>> digits = [2//2, 2+2+2+2, 2, 2*2*2]



Containers



Containers

Built-in operators for testing whether an element appears in a compound value

4

>>> digits = [1, 8, 2, 8]
>>> 1 in digits
True
>>> 8 in digits
True
>>> 5 not in digits
True
>>> not(5 in digits)
True

(Demo2)



For Statements

(Demo3)



Sequence Iteration

def count(s, value):
total = 0
for element in s:

if element == value:
total = total + 1

return total

Name bound in the first frame 
of the current environment 

(not a new frame)

6



For Statement Execution Procedure

for <name> in <expression>:

<suite>

1. Evaluate the header <expression>, which must yield an iterable value (a sequence)

2. For each element in that sequence, in order:

A. Bind <name> to that element in the current frame

B. Execute the <suite>

7



Sequence Unpacking in For Statements

>>> pairs = [[1, 2], [2, 2], [3, 2], [4, 4]]

>>> same_count = 0

>>> for x, y in pairs:
... if x == y:
... same_count = same_count + 1

>>> same_count
2

A sequence of 
fixed-length sequences

A name for each element in a 
fixed-length sequence

Each name is bound to a value, as in 
multiple assignment

8



Ranges



..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

The Range Type

>>> list(range(-2, 2))
[-2, -1, 0, 1]

>>> list(range(4))
[0, 1, 2, 3]

A range is a sequence of consecutive integers.*

* Ranges can actually represent more general integer sequences.

range(-2, 2)

Length: ending value - starting value

Element selection: starting value + index

List constructor

Range with a 0 starting value

(Demo4)

10



List Comprehensions

>>> letters = ['a', 'b', 'c', 'd', 'e', 'f', 'm', 'n', 'o', 'p']
>>> [letters[i] for i in [3, 4, 6, 8]]

['d', 'e', 'm', 'o']



List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

Short version: [<map exp> for <name> in <iter exp>]

A combined expression that evaluates to a list using this evaluation procedure:

1. Add a new frame with the current frame as its parent

2. Create an empty result list that is the value of the expression

3. For each element in the iterable value of <iter exp>:

A. Bind <name> to that element in the new frame from step 1

B. If <filter exp> evaluates to a true value, then add the value of <map exp>

to the result list
12



Strings



Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '[1, 2]'

Representing language:

"""And, as imagination bodies forth
The forms of things unknown, the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo6)

14



String Literals Have Three Forms

>>> 'I am string!'
'I am string!'

>>> "I've got an apostrophe"
"I've got an apostrophe"

>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character 
represents a new line

A backslash "escapes" the 
following character

Single-quoted and double-quoted 
strings are equivalent

15



Dictionaries

{'Demo': 7}



Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

17


