
Iteration

George Boole

While Statements

1. Evaluate the header’s expression.

2. If it is a true value,
execute the (whole) suite,
then return to step 1.

1 2 3
1 3 6

2

(Demo)

Execution Rule for While Statements:

fib

n

pred
curr

k

5

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr = 0, 1 # 0th and 1st Fibonacci numbers
k = 1 # curr is the kth Fibonacci number
while k < n:

pred, curr = curr, pred + curr
k = k + 1

return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

3

The next Fibonacci number is the sum of
the current one and its predecessor

12345

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

5

def square(x):
"""Return X * X."""

x is a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function… Generalization!

Give each function exactly one job, but make it apply to many related situations

6

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

>>> round(1.23)
1

Generalization

Shape:

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Area:

Finding common structure allows for shared implementation

8

(Demo1)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

10

(Demo2)

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Summation Example

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

11

Functions as Return Values

(Demo3)

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 � 3) / (k * 4 � 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g �� functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

13

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

14

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

