Homework 1: Variables, Functions and Control

Due by 11:59pm on Wednesday, June 12

Instructions

Download hw1.zip.

Submission: When you are done, submit the hw1.py file and a scanned image answer to question 1 on Gradescope. You may submit more than once before the deadline; only the final submission will be scored.

Readings: You might find the following references useful:

Grading: Homework is graded based on correctness. Each incorrect problem will decrease the total score by one point. This homework constitutes 5% of the final grade.

Required Questions

Q1: Let's Practice Uploading on Gradescope

Draw a picture of the Emzini weCode logo and submit along with your hw1.py file on gradescope. Write your name and email in the picture. Draw on an actual piece of physical paper using either a pen or a pencil.

Q2: A Plus Abs B

Fill in the blanks in the following function for adding a to the absolute value of b, without calling abs. You may not modify any of the provided code other than the two blanks.

from operator import add, sub

def a_plus_abs_b(a, b):
    """Return a+abs(b), but without calling abs.

    >>> a_plus_abs_b(2, 3)
    5
    >>> a_plus_abs_b(2, -3)
    5
    >>> # a check that you didn't change the return statement!
    >>> import inspect, re
    >>> re.findall(r'^\s*(return .*)', inspect.getsource(a_plus_abs_b), re.M)
    ['return f(a, b)']
    """
    if b < 0:
        f = _____
    else:
        f = _____
    return f(a, b)

Q3: Two of Three

Write a function that takes three positive numbers as arguments and returns the sum of the squares of the two smallest numbers. Use only a single line for the body of the function.

def two_of_three(x, y, z):
    """Return a*a + b*b, where a and b are the two smallest members of the
    positive numbers x, y, and z.

    >>> two_of_three(1, 2, 3)
    5
    >>> two_of_three(5, 3, 1)
    10
    >>> two_of_three(10, 2, 8)
    68
    >>> two_of_three(5, 5, 5)
    50
    >>> # check that your code consists of nothing but an expression (this docstring)
    >>> # a return statement
    >>> import inspect, ast
    >>> [type(x).__name__ for x in ast.parse(inspect.getsource(two_of_three)).body[0].body]
    ['Expr', 'Return']
    """
    return _____

Hint: Consider using the max or min function:

>>> max(1, 2, 3)
3
>>> min(-1, -2, -3)
-3

Q4: Largest Factor

Write a function that takes an integer n that is greater than 1 and returns the largest integer that is smaller than n and evenly divides n.

def largest_factor(n):
    """Return the largest factor of n that is smaller than n.

    >>> largest_factor(15) # factors are 1, 3, 5
    5
    >>> largest_factor(80) # factors are 1, 2, 4, 5, 8, 10, 16, 20, 40
    40
    >>> largest_factor(13) # factor is 1 since 13 is prime
    1
    """
    "*** YOUR CODE HERE ***"

Hint: To check if b evenly divides a, you can use the expression a % b == 0, which can be read as, "the remainder of dividing a by b is 0."

Q5: If Function vs Statement

Let's try to write a function that does the same thing as an if statement.

def if_function(condition, true_result, false_result):
    """Return true_result if condition is a true value, and
    false_result otherwise.

    >>> if_function(True, 2, 3)
    2
    >>> if_function(False, 2, 3)
    3
    >>> if_function(3==2, 3+2, 3-2)
    1
    >>> if_function(3>2, 3+2, 3-2)
    5
    """
    if condition:
        return true_result
    else:
        return false_result

Despite the doctests above, this function actually does not do the same thing as an if statement in all cases. To prove this fact, write functions cond, true_func, and false_func such that with_if_statement prints the number 47, but with_if_function prints both 42 and 47.

def with_if_statement():
    """
    >>> result = with_if_statement()
    47
    >>> print(result)
    None
    """
    if cond():
        return true_func()
    else:
        return false_func()

def with_if_function():
    """
    >>> result = with_if_function()
    42
    47
    >>> print(result)
    None
    """
    return if_function(cond(), true_func(), false_func())

def cond():
    "*** YOUR CODE HERE ***"

def true_func():
    "*** YOUR CODE HERE ***"

def false_func():
    "*** YOUR CODE HERE ***"

Hint: If you are having a hard time identifying how an if statement and if_function differ, consider the rules of evaluation for if statements and call expressions.

Q6: Hailstone

Douglas Hofstadter's Pulitzer-prize-winning book, Gödel, Escher, Bach, poses the following mathematical puzzle.

  1. Pick a positive integer n as the start.
  2. If n is even, divide it by 2.
  3. If n is odd, multiply it by 3 and add 1.
  4. Continue this process until n is 1.

The number n will travel up and down but eventually end at 1 (at least for all numbers that have ever been tried -- nobody has ever proved that the sequence will terminate). Analogously, a hailstone travels up and down in the atmosphere before eventually landing on earth.

Breaking News (or at least the closest thing to that in math). There was a recent development in the hailstone conjecture in 2019 that shows that almost all numbers will eventually get to 1 if you repeat this process. This isn't a complete proof but a major breakthrough.

This sequence of values of n is often called a Hailstone sequence. Write a function that takes a single argument with formal parameter name n, prints out the hailstone sequence starting at n, and returns the number of steps in the sequence:

def hailstone(n):
    """Print the hailstone sequence starting at n and return its
    length.

    >>> a = hailstone(10)
    10
    5
    16
    8
    4
    2
    1
    >>> a
    7
    """
    "*** YOUR CODE HERE ***"

Hailstone sequences can get quite long! Try 27. What's the longest you can find?

Submit

Make sure to submit this assignment on Gradescope