CS 7 Midterm Study Guide - Page 1

Import statement

=2 pi

Frames (right):

(Assignment statement)

Code (left):

Statements and expressions A name is bound to a value
Red arrow points to next line.
Gray arrow points to the line
just executed

In a frame, there is at most
one binding per name

from operator import mul
def square(x):

208

Pure Functions

——

[mul(add(z, nul(4, 6)), add(3, 5)))

-2 b abs(number):
1 »2

2, 10 b pow(x, y):
1) 1024

Non-Pure Functions

20 print(eo): L
__f/_

display “-2"

) None

= return mul(x, x) — - Compound statement
square(-2) (Built-in functlon\/_) Defining: Return
TN . IS N expression
Global frame {func mul(...) [parent=Globall} >>>§def fﬁy?i@f)
o . . Def § ‘ {<statement>
Intrinsic name of mul {func square(x) [parent=Global]’ statement | - - i<statement>
function called square . -
Body (return statement) P
,,,,,,,,, ! <separating header>:

Formal parameter =~
bound to
argument

Return value is
not a binding!

from operator import mul Global frame
def square(x):‘
return mul(x,

square(square(3))

A name evaluates to
the value bound to
that name in the "
earliest frame of =

the current o f2: square [parent=Global]
environment in which x 9
that name is found. Return

alue

[—

81

Call expression:

operator: square
function: func square(x)

Calling/Applying:

isquare(2+2k/operand: 242 |||
""""" 7 |argument: 4 : e

<statement>
<statement>

def abs_value(x):

1 statement, . g

3 clauses, lfn X

3 headers,

3 suites,

2 boolean elsereturn 0
contexts ;eturn x

Evaluation rule for call expressions:

1.Evaluate the operator and operand subexpressions.

2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

Applying user-defined functions:

1.Create a new local frame with the same parent as the
function that was applied.

.Bind the arguments to the function's formal parameter
names in that frame.

.Execute the body of the function in the environment
beginning at that frame.

Execution rule for def statements:

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.

3.Bind the name of the function to the function value in the
first frame of the current environment.

Execution rule for assignment statements:

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.
Execution rule for conditional statements:

Each clause is considered in order.

1.Evaluate the header's expression.

2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

Evaluation rule for or expressions:
1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for and expressions:
1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.
3.0therwise, the expression evaluates to the value of the
subexpression <right>.
Evaluation rule for not expressions:
1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.
Execution rule for while statements:
1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

N

w

ayn is
1 def f(x, y): not found

2 return g(x)

def g(a):
return a +y

7 result = f(1, 2)

not found

Global frame func f(x, y) [parent=Global]

f

—>func g(a) [parent=Global]
g «

eAn environment is a
sequence of frames

fl: f [parent=Global]

x 1

y 2 *An environment for a
non-nested function
(no def within def)
consists of one local
frame, followed by the
global frame

f2: g [parent=Global]
a1l

from operator import mul
def square(square):
return mul(square, square)

square (4) *

A call expression and the body
of the function being called
are evaluated in different
environments

A

Global frame
mul

square

%

fl: square [parent=Global]

square 4

Return

16
value

def fib(n):

"""Compute the nth Fibonacci number, for N >= 1."""
Zeroth and first Fibonacci numbers
curr is the kth Fibonacci number

pred, curr =
k=1
while k < n:
pred, curr =
k=k+1
return curr

0, 1

curr, pred + curr

1S]uawWa3lels Jap paisaN
1uoT3douUny J43pJo-JaybTH

def cube(k):
return pow(k, 3)

{

Function of a single
argument (not called term)

)

=

will be bound to a functionJ

A formal parameter that

total, k = 0,

The cube function is passed]

as an argument value

while k <= n:

return total

SweJ) 1eJ0] 9yl UT SSWEU 0} punog aJe SITPOQ UOTIduUNy
SN1eA UJN1SJ B Se UOT1dUN B SUJNIdJ JO an1eA juswnbie

49410 UTYITM PauUT4ap SUOTIDUN4

0+ 13 + 23 + 33 + 43+ 55] [

The function bound to term
gets called here

ue se UOT1dUN4 B S3Yel 1Byl UOTIdUNY Y

)

Rectangle

FreeText
CS 7 Midterm Study Guide - Page 1

CS 7 Midterm Study Guide - Page 2

square

Evaluates to a function.
No "return" keyword!

A function
with formal parameters x and y
that returns the value of "§'¥"7'

def square(x):
return x * x

VS

¢ Both create a function with the same domain,

square = lambda x: x * X

range, and behavior.

¢ Both functions have as their parent the environment in which they
were defined.

¢ Both bind that function to the name square.

The name add_three is]

bound to a function
A local
def statement

‘def adder(k):
i return k

return adder Can refer to names in]

the enclosing function

¢ Only the def statement gives the function an intrinsic name.

When a function is defined:
1. Create a function value: func <name>(<formal parameters>)
2. Its parent is the current frame.

: make_adder func adder (k) [parent=fl]

3. Bind <name> to the function value in the current frame
(which is the first frame of the current environment).

When a function is called:

eEvery user—defined function has
a parent frame

*The parent of a function is the
frame in which it was defined

sEvery local frame has a parent
frame

*The parent of a frame is the
parent of the function called

A function’s signature
has all the information
to create a local frame

Global frame

make_adder
add_three

func adder(

return k + n__
return adder .

add_three = make_adder (3)':
add_three (4) H

adder

Return
value

func make_adder(n) [parent=Global]

){[parent=f1]

1. Add a local frame, titled with the <name> of the function being
called.

2. Copy the parent of the function to the local frame: [parent=<label=>]

3. Bind the <formal parameters> to the arguments in the local frame.

4. Execute the body of the function in the environment that starts with
the local frame.

def fact(n):
--------------- | - if n ==

‘ return 1
else:

return n * fact(n-1)

fact(3)

Global frame func fact(n) [parent=Global]

v
£2: adderi [pa 1)
[
k 4
Return |5
value

fact

fl: fact [parent=Global

def composel(f,

g):
Return a function h that composes f and g.

25

def h(x): Return value of make_adder is
return f(g(x)) an argument to composel

return h

n 3

f2: fact [parent=Globall

N2

f3: fact [parent=Global

Anatomy of a recursive function:

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls
def sum digits(n):
"""Return the sum of the digits of positive integer n.
if n < 10:

n 1
f4: fact [parent=Global
n 0

Return
value

return n Is fact implemented correctly?
else: 1. Verify the base case.
all but _last, last = n // 10, n % 10 2. Treat fact as a functional abstraction!
return sum digits(all but_last) + last 3. Assume that fact(n-1) is correct.
4. Verify that fact(n) is correct,
def cascade(n): Global frame func cascade(n) [parent=Global] assuming that fact(n-1) correct.
if n < 10: cascade
print(n)
else: f1: cascade [parent=Globall + Each cascade frame is
print(n) n 123 from a different call
cascade(n//10) . .
roney 12t cascate tparent-cionats to cascade. - Recursive decomposition: def count partitions(n, m):
- : = S) ; C
o= 12 . Until the Return value finding simpler instances of if n ==
cascade(123) 1 et appears, that call has a problem. . return 1
] 4 None not completed. - E.g., count_part;t;ops(G, 4) elif n < 0:
Program output: : - Explore two possibilities: return 0
= mf3: cascade [parent=Global] ° Any statement can - Use at least one 4 elif m ==
0l appear before or after - Don't use any 4 return 0
Retum | nome the recursive call. - Solve two S:I:mp.ler’"probl'emst' else:
velue + count_partitions(2;-4)- -»with_m = count_partitions(n-m, m)
}Cou"t—Part}tlons(G' 3) > without_m = count_partitions(n, m-1)
+ Tree recursion often involves return with m + without m
exploring different choices. - -
. n 1,2,3,4,5,6, 7, 8,
1 def 1nvezs§_cascade(n). fibm: @, 1, 1, 2, 3, 5, 8, 13, 21,
12 grqwt?) from operator import floordiv, mod
P;ln k?) def £ib(n): N def divide_exact(n, d):
123 shrinktn if n oo ‘, "iReturn the quotient and remainder of dividing N by D.
return 0 N M |
1234 def f?th(.en_g(f, g, n): elif n == >>>{q, r = divide_exact(2012, 10 Multiple assignment
it n: return 1 >>> to two names
123 f(n) else: 201
12 g(n) return fib(n-2) + fib(n-1) i
. 2
1 grow = lambda n: f_then_g(grow, print, n//10) wan . Multiple return values,
shrink = lambda n: f_then_g(print, shrink, n//10) return’ N separated by commas

Rectangle

FreeText
CS 7 Midterm Study Guide - Page 2

