
CS 7 Introduction to Programming and Computer Science
SUMMER 2023 MIDTERM
EXAM VERSION FIRE NATION
DATE JUNE 18
TIME 4:10 TO 6:10 PM CAT

INSTRUCTIONS

● You have 2 hours to complete the exam.
● The exam is open book, open notes, closed computer. You may consult any books, notes,

or other non-responsive objects available to you.
● There are 4 questions in this exam all worth 40 points. The midterm is worth 10 percent of

the total grade.
● Answer on the separate answer sheet. You may use a scratch for your work but make

sure to transfer the solutions to the answer sheet. Work not in the answer sheet will not
be graded.

● After completing this exam, you will have 10 minutes to scan and upload your answer
sheet to the midterm assignment on Gradescope.

Be warned: Computer Science exams are known to cause panic. Fortunately, this

reputation is entirely unjustified. Just read all the questions carefully to begin

with and first try to answer those parts about which you feel most confident. Do not

be alarmed if some of the answers are obvious. Should you feel an attack of anxiety

coming on, feel free to jump up and run around the outside of your building once or

twice.



2

1. (11 points) Mudiwa Janet💔🎸
For each of the expressions in the table below, write the output displayed by the interactive Python interpreter when the
expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”.
Hint: No answer requires more than 5 lines. (It’s possible that all of them require even fewer.)
The first two rows have been provided as examples.
Recall: The interactive interpreter displays the value of a successfully evaluated expression, unless it is None
Assume that you have started python3 and executed the following statements:

from operator import sub

def ndiwe(here):

return print(here , here)

def janet(mudiwa):

usambochema, joe = ndiwe , print

joe(usambochema(mudiwa))

return vana(mudiwa)

def vana(vana):

if vana:

return vana + vana

elif usambochema(vana)(print)(print):

return 1000

else :

return joe(3)

joe = vana

usambochema = lambda v : lambda a : lambda n : n (5 , a (v))

Question Expression Interactive Output

pow(3, 4) 81

print(2, 0) 2 0

A print(ndiwe(2+3), print(7))

B janet(1)

C janet(joe(7))

D usambochema(1)(vana)(min)

E vana(print(3))

F usambochema(0)(joe)(sub)



3

2. (12 points) Unono ngowami💃🏾
a. (6 pt) Fill in the environment diagram that results from executing the code below until the entire program is finished,

an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.
A complete answer will:

● Add all missing names and parent annotations to all local frames.
● Add all missing values created or referenced during execution.
● Show the return value for each local frame.

Global frame ___________ |______

___________ |______

___________ |______

___________ |______

f1: _________________[parent=_______]

___________ |______

___________ |______

Return Value|______

f2: _________________[parent=_______]

___________ |______

___________ |______

Return Value|______

f3: _________________[parent=_______]

___________ |______

___________ |______

Return Value|______



4

b. (6 pt) Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames. The<line ...> annotation in
a lambda value gives the line in the Python source of a lambda expression.

Global frame ___________ |______

___________ |______

___________ |______

f1: _________________[parent=_______]

___________ |______

___________ |______

___________ |______

___________ |______

Return Value|______

f2: _________________[parent=_______]

___________ |______

Return Value|______

f3: _________________[parent=_______]

___________ |______

Return Value|______

f4: _________________[parent=_______]

___________ |______

Return Value|______



5

3. (10 points) CS 7 : A feast of the Sevens🧮
a. (6 pt) The standard number representation system is the decimal system, where each digit in a number represents a

power of ten. The right-most digit is the ones’ place, the next digit is the tens’ place, etc.

In the septimal system, each digit in a number represents a power of seven. The right-most digit is still the 1’s place,
but the next digit is the 7’s place, the next digit is the 49’s place, etc. Each digit ranges from 0-6, so septimal numbers
will never contain the digits 7, 8 or 9.

To convert a number represented in septimal to a number represented in decimal, each digit must be multiplied by the
appropriate power of seven. For example, 123 is actually (1 * 49) + (2 * 7) + (3 * 1), resulting in a
decimal representation of 66.
The diagram visualizes the equivalence between the septimal and decimal numbers:

Implement convert_to_decimal, which takes a septimal l number and returns the decimal equivalent. The septimal
number will always start with a non-0 digit, and the number will always be positive

def convert_to_decimal(septimal):

"""

>>> convert_to_decimal(3) # (7^0 * 3)

3

>>> convert_to_decimal(23) # (7^1 * 2) + (7^0 * 3)

17

>>> convert_to_decimal(123) # (7^2 * 1) + (7^1 * 2) + (7^0 * 3)

66

"""

decimal = 0

curr_place = _________A_________

_________B_________:

curr_digit = _________C_________

decimal = _________D_________

curr_place = _________E_________

septimal = _________F_________

return decimal

(4 pt) Implement forbid_digit, a higher-order function which takes two arguments, a function f and a digit
forbidden, and returns another function. If the returned function is passed a number where the digit in the 1s



6

place is equal to the forbidden digit, it should return the result of calling the given function on the number
without that final digit. Otherwise, it should return the result of calling the given function on the number.

def forbid_digit(f, forbidden):

"""

>>> g = forbid_digit(lambda y: 200 // (y % 10), 0)

>>> g(11)

200

>>> g(10)

200

>>> g = forbid_digit(lambda x: f'{x}a', 6)

>>> g(61)

'61a'

>>> g(66)

'6a'

>>> g = forbid_digit(g, 3)

>>> g(43)

'4a'

>>> g(63)

'0a'

>>> g(44)

'44a'

"""

def forbid_wrapper(n):

if _________A_________:

_________B_________

else:

_________C_________

_________D_________



7

(7 points) Lava Bending

a. (6 pt) Implement lava_hopper, a function that “hops” from one number to the next computed number and tries to
avoid any number detected as “lava”. When it does land on “lava”, it steps backwards by one number until it finds a
non-lava number and then keeps hopping.

The function takes four arguments: start_number (the initial number), goal_number (the target number),
next_hop (a function that computes the next number based on the current), and is_lava (a function that returns a
boolean indicating if a number is lava), and it returns the minimum number of hops required to get from
start_number to at least goal_number. The number of hops does not include steps backwards. If either the
start_number or goal_number spots are lava, it returns the string ‘No lava allowed there!’.

For example, consider this call

lava_hopper(1, 8, lambda x: x * 2, lambda x: x == 4)

The function starts from the number 1 and then hops to the numbers 2, 4, realizes that’s lava, steps back to 3, hops to 6,
hops to 12, and returns 4 (the number of hops required to get to/past 8).

Note that depending on the functions passed in for next_hop and is_lava, it is possible for a correct lava_hopper
implementation to result in an infinite loop.

def lava_hopper(start_number, goal_number, next_hop, is_lava):

"""

>>> # hops from 1->2, 2->4, 4->8

>>> lava_hopper(1, 8, lambda x: x * 2, lambda x: False)

3

>>> # hops from 1->2, 2->4, steps to 3, hops 3->6, hops 6->12

>>> lava_hopper(1, 8, lambda x: x * 2, lambda x: x == 4)

4

>>> # hops from 1->2, 2->4, 4->8, steps to 7, then 6, then 5, hops to 10

>>> lava_hopper(1, 10, lambda x: x * 2, lambda x: 6 <= x <= 8)

4

>>> # hops from 3->6, 6->12, steps to 11, hops 11->22

>>> lava_hopper(3, 20, lambda x: x * 2, lambda x: x % 10 == 2)

3

>>> lava_hopper(1, 8, lambda x: x * 2, lambda x: x == 1)

'No lava allowed there!'

>>> lava_hopper(1, 8, lambda x: x * 2, lambda x: x == 8)

'No lava allowed there!'

"""

if _________A_________:

return 'No lava allowed there!'

num_hops = 0

while _________B_________:

_________C_________:

_________D_________



8

start_number = _________E_________

_________F_________

return num_hops

NB: C, start_number and F have the same indentation

b. (1 pt) Write a call to lava_hopper that would result in an infinite loop.

lava_hopper(_________A_________)

c. (1 pt) Who was the second strongest person in history after Samson?

_________B_________


